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Using the saddle-point method, asymptotics of time evolution for spatially localized three- 
dimensional intrinsic disturbances are determined. Criteria of absolute instability are established 
for the case of a branching dispersion relationship. Calculation results for the regions of existence 
of instability for a flat-plate boundary layer for Re -* oo and M = 10 are presented. 

The term "absolute instability" implies the existence of spatially localized intrinsic linear disturbances, 
which cover the entire flow with time and infinitely grow at all points of the flow. An alternative notion of 
convective instability defines a class of flows, in which localized disturbances can reach a maximum value 
growing downstream, but leave a stabilizing flow behind them. Therefore, the growth of disturbances excited 
in a finite region is limited by the time of their passage through this region, whereas in the case of absolute 
instability it is limited by the time of existence of a given flow regime. Convectively unstable systems can only 
amplify the disturbances, whereas absolutely unstable systems can generate them [1]. 

The study of absolute instability in a free shear layer [2] shows that a rather strong counterflow is 
necessary for its existence; therefore, the instability of a two-dimensional boundary layer can be expected to 
have a convective character. Nevertheless, Petrov [3] found absolute instability of a supersonic boundary layer 
on a flat plate, which was caused by the existence of higher modes [4]. A unique dependence of frequency on 
the wavenumber (dispersion relationship) or its isolated branch were considered previously [1], and exactly 
the presence of branch points and their positions play a decisive role in the case of a supersonic boundary 
layer. 

In the present paper, the results obtained by Petrov [3] are extended to three-dimensional disturbances 
in a flow depending only on the y coordinate. The integral 

~a2 cr  

/(x,y,z,t)= / f (1) 
r 0 

whose integrand is formed from the known solutions of the instability problem for oblique sinusoidal waves 
propagating at an angle T to the direction of the Ox coordinate axis, is also the solution of this problem 
(superposition). Here i is the imaginary unity, x, y, and z are the coordinates (y is the distance from the 
wall), t is the time, k = ]k[ is the wavenumber, w(k, ~) is a function that defines the dispersion relationship 
between the complex angular frequency w = wr + iwi and the real wave vector k, ](k, ~2, Y) is the vector 
eigenfunction whose components are preexponents of the fluctuations of velocity, pressure, and other flow 
parameters, and the function g(k, r is arbitrary. If g(k, ~) does not contain ~-functions and integral (1) 
converges in the classical sense, then ](x, y, z, t) is a spatially localized intrinsic disturbance. 

The internal integral in Eq. (1) for a given ~ is a two-dimensional disturbance localized in the direction 
of its propagation. The use of the saddle-point method [5] for t ---* oc yields the asymptotic formula 
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] ( x, y, z, t) ",~ t -112 / gs( ~) fs( 9, Y) exp { i[ ks( ~a)(x cos ~ + z sin ~2) - Ws( ~)t]} d~p, (2) 
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w h e r e  g s ( V )  = =  )/Ok 2 for  k = U) = U), = 

w(ks(~), q~), ks(v)  is the saddle point defined as the solution of the equation Ow(k, ~) /Ok  = 0 extended to the 
complex plane k = kr + iki. 

If there exists a saddle point ~pe of the function ws(~2), which is defined as the solution of the equation 
dw~/d~2 = O, its contribution to the asymptotic can be evaluated by repeated use of the saddle-point method 
for Eq. (2): 

] ( x , y , z , t )  ~ t - l~ /27r / iw~(~ )g~ f~ ( y ) e x p  { i [ k ~ ( x c o s ~  + zsincp~) -w~t ]} ,  t --* ee, (3) 

where g~ = gs(~a), fa(y)  = fs (~a,y) ,  k~ = ks(~a), wa = ws(~a), and the primed symbols are derivatives. 
The contribution of the integration boundaries ~ob, i.e., in1, !o2, etc. [see (1) and (2)], to the asymptotics 

is determined by another formula 

](x ,  y, z, t) ,,~ t-a/2[gb/iJs(q~b)]fb(y ) exp {i[kb(x cos qab + z sin q~b) -- ;obt]} (t ~ c~), (4) 

where gb = gs(~b), h (Y )  = fs(cPb,Y), kb = ks(gab), and Wb = Ws(qab). 
Numerical studies are performed for a flat-plate boundary layer for Re --* r The equations of inviscid 

theory and the boundary conditions for oblique elementary waves have the following form [4]: 

0, o, ( 1 )  } 
- -  - -  ~ +  - - u + c  ik~, 

u - c s = 7MZp(u - c) cos 2 c2, c = o~/k, 
~l = - i k s ~ ,  

9 ~ 0 ,  15-"*0 for y - - - ~ ,  ~3=0 for y = 0 ,  

where/5 and 73 are the fluctuations of pressure and normal-to-wall component of velocity, the primed symbols 
are derivatives relative to y, p and u are the density and velocity profiles, 7 is the ratio of specific heats in 
a gas, and M is the Mach number. In calculating the boundary-layer profiles, it is assumed that the gas is 
perfect, the viscosity is proportional to temperature,  and the Prandtl number is P r = l .  

Petrov [3] studied two-dimensional instability for qa = 0. It is shown that  there is a saddle point k~ 
in the vicinity of each branch point kb of the function w(k) and the branch point itself is a saddle point of 
the inverse function k(w). A similar symmetry is the typical feature of the existence conditions for absolute 
instability: the known requirement of the growth in t ime of wsi > 0 (the subscript i indicates the imaginary 
part) of an elementary wave corresponding to the saddle point is supplemented by the requirement of spatial 
growth of kbi < 0 in the direction k of the wave corresponding to the branch point, i.e., 

Ow Ok 
w i > 0  for 0---k=0' k i < 0  for 0w 0. (5) 

Two types of absolute instability were found: the first type is caused by branching of subsonic modes 
with each other, the second type is caused by branching of subsonic and supersonic modes. 

Generalizing the results obtained to oblique waves in the vicinity of the angle ~ = 0, we introduce the 
following notation for the boundaries of two-dimensional absolute instability: 

Ok Oa~ 
B,~,,: ow = O' ki = O, S~n: ok - O' wi = O, 

where m and n are the numbers of branching modes. In the general case, they are surfaces in the space of the 
flow parameters and the angle qa of propagation of an elementary wave. 

Figure 1 shows the regions of two-dimensional absolute instability (5) calculated for M = 10 and 
7 = 1.4. This instability is caused by branching of subsonic modes: region II is formed by branching of the 
second and third modes and region III by branching of the third and fourth modes (Tw is the wall temperature 
relative to the flow temperature).  In these and other figures, the boundaries Bran are plotted by solid curves 
and the boundaries Stun by dot-and-dashed curves. The consideration of oblique waves expands the range of 
wall temperatures for which two-dimensional absolute instability exists [3]. 
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For planar flows, the disturbance characteristics are even functions of the angle q~; therefore, the point 
= 0 is a saddle point of the function ws(qo). Judging by the configuration of the  dot-and-dashed curves 

S23 and Sa4, we can tell that this is the point of the maximum growth rate of wsi(qo) (this fact is validated 
by direct calculations). Thus, formula (3) is valid, from which it follows that  three-dimensional absolute 
instability also exists in the regions of existence of two-dimensional absolute instability calculated by Petrov 
[3]. Small initial three-dimensional perturbations excite a wave with an equal frequency, length, y-distribution 
of the amplitude, and even asymptotic growth rate, since the power factor in t ime is insignificant for large t. 

As in the planar problem, there are no asymptotics for oblique localized disturbances determined by 
the integrand in Eq. (2) outside the boundaries Bran of the corresponding regions of absolute instability, 
since the path of integration of Eq. (1) with respect to k from one valley to another  through a saddle point 
leads to another branch and is not equivalent to the real semi-axis. Hence, Bran determine the boundaries 
q0b of integration in relation (2), and their contribution to the asymptotics of a three-dimensional localized 
disturbance is described by formula (4). Because of the symmetry, these are two oblique waves propagating 
at angles ~ = :t=q~b (they are plotted by solid curves in Figs. 1, 3, and 4). 

The growth rates wsi(Cpb) and wsi(0), which determine the asymptotic growth rate of disturbances 

in time, are shown in Fig. 2. They are normalized using the time scale ~ ,  where ve and u~ are the 
kinematic viscosity and the free-stream velocity and x is the distance from the plate edge. For Tw = 0.47, 
the highest growth rates correspond to waves with a moderate angle of propagation q0b ~ 20~ (section ab 
in Figs. 1 and 2). Within the range Tw = 0.47-1.64 (section bc in Fig. 1), the asymptot ic  is a plane wave 
propagating along the flow. For Tw > 1.64 (section de in Figs. 1 and 2), the asymptot ic  is an oblique wave 
with a large angle of propagation (qab > 55~ 

As the wall temperature is further increased, absolute instability corresponding to branching of the 
third and fourth modes appears and dominates beginning from Tw = 1.88, and the sequence of asymptotics 
is repeated. 
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Figure 3 shows the boundaries B12 of the regions of absolute instability caused by branching of the first 
and second subsonic modes for M = 8.3 (curve 1) and M = 10 (curve 2). With increasing Mach number, the 
boundary moves toward the lower temperatures of the wall. The calculations for higher neighboring modes 
yield an identical result. 

Absolute instability of the second kind, which is cause by branching of subsonic and supersonic modes, 
occurs for lower values of the ratio of specific heats 3'- The existence regions of this instability for M = 10 
and T,~ = 1 are plotted in Fig. 4. Region II corresponds to the second mode and region III to the third mode. 
The notation in Fig. 5, which shows the asymptotic growth rate versus 7, is also associated with the mode 
numbers. Absolute instability for the disturbances of the third mode is very weakly expressed. Concerning 
the second mode, only oblique waves with the growth rate wsi(~b) (~b is determined by the boundary B22 of 
region II in Fig. 4) can be self-excited for "r < 1.210 and a streamwise wave with the growth rate wsi(0) is 
excited within the range "7 -- 1.210 - 1.238. 

Thus, the two-dimensional absolute instability found by Petrov [3] corresponds also to three- 
dimensional absolute instability, within the same range of the boundary-layer parameters and with the same 
asymptotic wave characteristics of the disturbances. In addition, there is an asymptotic of three-dimensional 
localized disturbances in the form of oblique sinusoidal waves growing with time, which significantly expands 
the range of the existence parameters of absolute instability. The angles of propagation of these waves are 
determined by the branch points of the function w(k) on the real plane k. 
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